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Localization of the Eigenvalues of Linear Integral Equation;
with Application;, to Linear Ordinary Differential Equations

by

James M. Sloss	 and Stan K. Kranzler

int roduction: In this paper we consider integral equations of the

form:

(1)	 CP(P) =- '• f K(P,Q)^O(Q)d2 + f (Q)
D

where D is a boundEl measurable set of R d , Euclidean space of dimension

Q, K(P,Q) is defined and square integrable over D X D (not necessarily

symmetric), f is defined and square integrable over D and ^ p is the

ulknown function.

It is our purpose (i) to show that the eigenvalues of (1` can be

Lpproximated by the reciprocal eigenvalues of a finite matrix Km = (Kij)

)f order m that is easily determined from K, (ii) to derive an explicit

i
error estimate for the approximation that depends on K and m dnd (iii) to

:apply the results of (i) and (ii) to the problem of effectively approximating

.he eigenvalues of a self adjoint ordinary differential equation.

Let us form, for some complete orthonorma.l set in L 2 (D), the matrix

Ki .
J
 ) of Fourier coefficients of K. We shall show (Theorem 1) that the

)roblem of finding the eigenvalues and eigenfunctions of (1) is equivalent

10 the problem of finding the eigenvalues and eigenvectors of the infinite

matrix (Kij ). Having done this, we shall prove (Theorem 2) a generalization

of the Gerschgorin circle theorem that applies to the infinite matrix (K_j).
1
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In theorem 3, we shall consider the case when an upper left hand square

matrix Km of ( Kij ) is similar to a diagonal matrix and show that the

eigenvalues of ( Kij ) lie in the union of circles --entered at zero and

the eigenvalues of A, with radii depending cnly on m, those K ij for

1 s i s m, j Z m -+ 1, and the norm of the matrix used tD diagonalize Km.

Moreover, exactly as many eigenvalues, counting multiplicities, lie in each

connected component as circles that make up the component. When the matrix

Km is :symmetric, the radii depend _aly on m and K
ij

, 1 s i s m,

ja m+1.

In the event the radii diminish with m, the explicit bounds on the

radii can be used to give error bounds on how closely the eigenvalues of

the upper left matrix approximate the reciprocal eigenvalues of (1). Thus

the problem of finding eigenvalues of (1) to a prescribed degree of accuracy,

redrces to choosing m judiciously and then computing the eigenvalues of

the m x m matrix.

We apply the results to self adjoint ordinary differential equations.

In this case K becomes the Green's function (or a minor variant of it)

and the eigenvalues of the differential equation are those of the integral

equation. Using the complex -xp onentials as the orthonormal set, the matrix

(Kij ), whose reciprocal eigenvalues are the eigenvalues of the differential

equation, is made ^:p of the Fourier coefficients of the Green's function,

moreover (Kij ) is symmetric. The error estimate can be written as Arm(n),

where n is the order of the differential. equation, A is a constant

depending on the Green's function and the differential equation and

1
rm (n)	

0 mn-3 2

The error estimate for second order equations, though of theoretical interest,

is of little practical value. For fourth and higher order differential

(2)

r.
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equations the estimate, because of (2), proves to be of great practical

value. By consulting a taole for rm(n) and computing A, the size of

the matrix (Kij ), that will give desired accuracy, can be determined by

inspection. A table for rm(2) and rm(4) is given.

As specific illustrations of the method, we choose the fourth order

equation governing the transverse displacement of a whicling Shaft fixed

to rotate between ball bearings at each end, see [7, p.442]. Z-lie eigen-

values for this problem are known. In order to illustrate how the method

can be adapted to second order equations, we chose the equation, governing

the motion of an inhomogeneous string, fixed at one end and restricted to

move transversally by an elastic force at the other end. We convei. tr*,s

problem to an equivalent fourth order differential system, and apply our

method to approximate the eigenvalues. The results are compared kith those

of Collatz [ 3, p.2571 who has bracketed the first few eigenvalues.

For references to the literature, see e.g., [ 1 ], [ 2 ], [ 3 ], [ 5 ],

[ 6 ], [ 8 ], [ 9 ], [10]. The method developed in this paper, as applied

to differential equations, is dependent on finding the Green's function

and thus its use is more restrictive than the variational methods. How-

ever, because of the error estimate, the problem of finding an upper bound

for an eigenvalue and the problem of finding a lower bound for an eigen-

value (in general a much more difficult problem) are solved simultaneously,

and to any preassigned accuracy.

Since working out the results of +.his paper, we have come across the

results of Losch [ 61, who proved that the eigenvalues of (K i ,
J
) converge

to the reciprocal eigenvalues of the integral equation with '.:ernel K.

However in his paper he dice not derive an error estimate.

We would ,like to express our deep gratitude to Charles Akemann for

carrying out the numerical computations involved in finding the matrices

0



(K_j )
m
 and the corresponding eigenvalues used in the two illustrations.

§l. Equivalence. In this paragraph we prove the equivalence of the

given integral equation with an infinite system of _linear equations. Before

proving the theorem we prove two lemmas.

Lemma 1. If K(P,Q) is a complex valued function in L2 (G xG),

{cx. (P) : i =1,2, ... }, is a complete complex-valued orthonormal set in

L2 (G), and cp(P) E L2 (G) then for

O i (Q) = J
G

 K(P,Q)cxi(P)dP

M

(1.1)	 K(P)Q)cp(Q),	 cp(Q) I cxj (P) aj (Q) E L1 (G)	 for almost all P,

j =1

CO

K(P,Q)cp(Q),	 cp(Q)	 crj(P) (^ j (Q) E L1 (G)	 for almost all Q,

tj =1
and

CO

(1.2)	 J K(P,Q)cp(Q)dQ = J cplQ)	 a. (P) j (Q)dQ	 for almost all P,
G	 G

j =1

CO

(1.2.1)	 J K(P,Q)dP = f 7 of (P) ^j (Q)dP	 for almost all Q.
G	 G

j =1

Proof. To show (1.1) and (1.1.1) it suffices to show that K(P,Q)

and

( 1 .3)	 ^ «j ( P ) ^ J (Q)

j =1

are equivalent L2 (G x G) functions since then by Schwarz's inequality:
G

6
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,^ .I
r
 IK(P^Q)r'(Q) IdQ dP s f .I IK(P,Q) I dP dQ f Icp(P) I 2dP measure G

G G	 G G	 G

and thus by Fubini's theorem K(P,Q)cp(Q) E L1 (G) for almost all P and

in L (G) for almost all Q. Similarly (1.2) will follow upon showing

6

1

K(P,Q) and (1.3) are equivalent L2 (G X G)

Note

n

nn (Q) = J I K (P,Q) -	 ai(P) ^i(Q)I2dP-0
G	 i=1

functions.

as n — o , for almost all Q in G,

since {cxi (P)) is a complete set in I,2 (G). Thus given any E > U, by

Egorov's theorem, there exists a measurable subset G of G such that

J h (Q,) dQ <n	 2
G

and the measure of G/ 
G < 8 K 

2 . Also

II	 II2
n	 n	

1
J I K (P ,Q) -	 cxi(P) i (Q) I

2dP s 2F IK(P I Q) I 2dP + ^' I	 cxi(P) R,(Q) I2dP]LI

G	 i=1	 G	 G i=1

n	

1I ^i(Q)2]
i=1

5 2[J I K(P,Q,) I2dP +
G

s 4S IK(P;Q.) 
I 2 

dP
G

where use has been made of the orthonormality of a  and Bessel's inequality.

Thus n

IIK (P,Q) -Ti P ^ 4 (Q) I1 2 = f hn (Q) dG. = Cf	 + J	 hn(Q) eQ

i=1	
G/G G

S	 ei2'^+IIKII2+2=E
BIIKII2

which proves the assertion.
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Next we prove

Lemma 2. Let K(P,Q) E L2 (G xG),	 ai (P)	 and ^ i (P) be as in

Lemma 1. Then

ai(P) S i (Q) E L1 (G) for almost all P in G and

i=1.

(i) if CP(P) E L2 (G) then for almost all P in G

CO

f ^ ai ( P ) i (Q) CP(Q) dQ = L ai(P) J ^ i (Q) CP(Q) dQ•

G 	 G

	

Moreover, for C. = fi 	CP(P)^ (P)dP we haveG ^	 —

C  ak QT E Ll (G). Similarly

k=1

(ii) if C = (C1)C2,...) E 1 2 then

	

CO	 CO

	

J	 C  ak (Q) ^
j 

(Q) dQ =	 C  J ^ J (Q) ak (Q) dQ•

	

G k=1	 k=1	 G

Proof: Note that by lemma 1, Schwarz': inequality anu compactness

M

ai ( P ) O i (Q) E Li 
(GxG).

i=1

Applying Fubini's theorem we obtain

CO

ai (P) 3i (Q) E L1 (G)	 for almost all P.

i=1

By the Riesz-Fischer theorem we obtain immediately that
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CO

G k Oxk (Q) E L2 (G) .

k=1

and by Schwarz's lemma it is also in L1(G).

(i) Let CO

	

S( P ^Q) _	 CYi(P) 0i (Q) CA)
i=1

and
n

	

Sn ( P )Q) _	 ai(P) O i (Q) CA)	 (n=1,2,...).

i=1

First note that

r	 (^	 r	 (^	
2

J J I S ( P ,Q) - Sn ( P ^Q) IdQ dP s I G I 2 J 1 I S(* ^Q) - Sn ( P ,Q); dQ ^^
G G	 G G

where I G I = measure of G. Now

CO

J J IS(P,Q) - Sn ( P ^Q) I2dQ dP 5	 II^k ^I 2 II
C
PII2 .

G G
k +1

Here use has been made cf Schwarz's lemma, and Parseval's equality. Since
CO

Z 110 
11 2

= II K II 2 we see that lim. s 1
10k 

11 2 =0 	 and thus
k=1	 k=n

lira J I Is(P,Q) - Sn (P,Q)FdQ dP = 0.
n G G

Applying Fatou's lemma we obtain

^lim I IS(P,Q) - Sn ( P ^Q) IdQ] dP = 0
G n G

and hence

lim j IS(P,Q) -S n (P,Q) IdQ = 0 for almost all P in G.
n G

But this clearly implies the conclusion.



(ii) Similarly, since

f	 ^ C  Ork(Q) 01 (Q)
N1

2 s f	 (Q) I' dQ f I I C  ak(Q) 1 2 dQ

G k=n	 G	 G k=n

S 11KII2 Z ICk ^2

k=n

wt:ere Schwarz's inequality, Bessel's inequality and Parseval's equality

have been used. The result follows.

Now we are in a position to prove the equivalence theorem viz:

Theorem 1.	 (Equivalence of integral equation with infinite system

of linear equations)	 Let	 {cei (P) ;	 j = 1,2, ... }	 be a complete orthonormal

set in	 L2 (G)and let	 K(P,Q) E L2 [G XG]. Consider the integral equation

(1.4)
	

^(P) = µ ^' K(P,Q)W(Q)dQ•
G

Let X	 be an eigenvalue and cp(P)	 be a corresponding function in ..2(G)

of (1.4). Let

(1.5)	 Si (Q) = f K ( P ,Q) cyi ( P ) aP,
G

(1.6)	 Kl j = J f 
G 

K(P ,Q) cyi (P) aj (Q) dl' dQ
G 

6

(1•'l)	 C 	 = f cp'P)0 (P) dP .
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Then ^ is an eigenvalue for the infinite Est cm

(1.8)
	

xi =	 Kijxj
J =1

and C = ( C1 , C2"" ) is a corresponding eigenvector in 1'2.

Conversely, if X is an eigenvalue of (1.8) and C = (Cl7C2,C3,...)

in Iis a corresponding eigenvector and

(1.9)	 C'(P) _	 C  C,i(P)

i=1

then ^ i,, an eigenvalue for (1.4) and cp(P) is a corresponding ei en-

f unct ic,n in L2 (G) . Moreover

(1.10)

	

iiCPll = I x I IIC I! -

Proof: Assume X is an eigenvalue and cp(P) is a corresponding

eigenfan--tion of (1.1,) which is in L 2 (G) . By lemma 1, we obtain for

almost all P in G

ro

Cp ( P )	 ^' cp(Q)	 ^j (P) j (4.) dQ
G

j=l

00

CY (p J cp (Q )Oj (Q)dQ	 by 1emrra 2
G

cc

of (P) Cj	by (1.7)

j =i

Substituting back ir:to (1.4) for cp we obtain
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M

(1.11)) aj (P) C j =	 aj(P) f Oj (Q) FX S ofk (Q) Ck' dQ

jL=J1	 j =1	 G	 k=1

orj (P) [	 L Ck f ^
j 

(Q) ^k (Q) dQ' by lemma 2.

j =1	 k=1	 G

But JG^j (Q) cak (Q) dQ, = IGf K(R,Q) cxj (R) ork (Q) dR dQ = Kjk . Thus since

the on (P )'s are linearly independent, the 	 and Ci satisfy (1.8) .

Next note that

CO	 00	 CO

	

I j 1 2 = L I	 ^(P) ^j	 dP 1 2 5 j I^DII 2 L 
110

^ II 2 s II^il 2 IIKII2
j =1	 j =1	 j =1

where use has been made of Bessel's inequality. Thus C is in "2 and

the first part of the theorem is established.

The argument is reversible and thus if X is an eigenvalue and C

a corresponding eigenvector in .'2 , of (1 .8), then cp defined by (1.9)

is an eigenfunction corresponding to the eigenvalue X of (1.4). We showed

in lemma 2,	 e0, as defined by (1.9) ; is in L2 (G). But since the a

are orthonormal

iI^PI12 = i
^ I 2	

ICji 2•

j =1

§2. Localization of eigenvalues. Because of the equivalence of the

integral equation with the infinite linear system, expressed in theorem 1,

it suffices to study the location of the eigenvalues of the infinite system.

The localization of these eigenvalues is expressed in theorems 2 and 3.
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Theorem 2.. Consider the infinite system

OD ^ n

(1.8) Xxi =	 ^ Ki jx,, where IK i j 12 < m ,
j =1 i, j =1

Given any	 el ,e2 > 0 choose	 m and q	 such that

00

(2.1)

OD

IKij I
2 <

a

-2

w

and	 ^J

CO

IKi	 I ` < 2 ,j

i=m+l j=1 ,%=q}1 i=1

any let

pk = 2m	 ^ Kk j 1 2 	l s k s m

j#k
acrd

Y2 =	 2q	
L 

I K.k j 1 2 ,	 1 s j s q.

k#j

Let X be an eiFenvalue of (1.8) and C = (Cl,C2) ... ) be a corresponding

eigenvector in 1 2 . Then X lies in

m
(2.2)	 U {z: I  - Kkkl < pk} U {z: IzI < ell

k=1

and in

q

(2.3)	 U {z: Iz - K
jj 

I < y  } U (z: IZ! < e2)
j=1

Moreover, each component of (2.2) (resp (2.3)) contains exactly as pa y

eigenvalues as circles, where the eigenvalues and circles are counted with

their multiplicities.

In the case (1.8) corresponds to the integral equation (1.4), then

(2.1) becomes

	

a	 "—Cf, 	 a

IIS i II2 <2'	 Itsj	 II2 < 2 .
i=m+1	 =q+l
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Proof: Let X be an eigenvalue of (1.5) (without loss of generality

assume X # 0) and C = ( C 1 , C2) ... ) be a corresponding eigenvector of

unit length. Then

(2.	 Kkk)Ck	 L K k,C, 	 (k=1)2,3,...)
jtk

Note that

M

L I^ j 1 2 s [ L ICj
j =m+1	 j -m+1

	

s r̀ 

D	 CD

I X-1 1 2 1 1 Kj kCk 12

	

L j -in+1	 k=1

	

00	 CO

	

S IX -1I 2 L	 L IKjkl211^112
,1 =m+1 k=1

	

Cro	 OD

c

	

s I Cl l 2 L	 L jKjkl2.
j--n+1 k=1

If 
I C I 

< e the result is clear. Assume that I X I 
z e. Then by (2.;) and (2.1)

00	 00	 CO

(2.6)	
ICJ I 2 S e-2 L	 IKjk

12 
< 2

j =m+l	 j =m+1 k=1

and there exists 1 s k s m such that 1C,1 2 > (2m) -l .	 Hence (2.4)

becomes

Kee
1 2 S IC.eI-2 L 

IKej 
1 2	ICJ I2

	

j # i	 J^.

S IC1I -2 [ 1 - IC'eI2	 IK, I`
J

J^

s 2m	 L I K,j 12
j^z
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The conclusion (2.2) follows immediately. (2.3) follows analogously and

the argument involving components follows exactly as in the case of

Gerschgorin circles.

Consider now the integral equation (1.4) and the corresponding system

(1.8). By the definition (1.5) of S i (Q), it is clear from Schwarz's

lemma that 0 i (Q) E L2 (G) and thus it has an expansion

00

IKik ak(Q)
k=1

where the Kik 's are given in (1.6). Thus

00	 CO

l2 =	 Y, j j^,(Q)12dQ
i=m-+-1	 i=m+1 G

00 CO

=
IKikl

2U

i=m+i k=i

by parseval's equality, which concludes the proof. (2.3) follows similarly.

Next we shall apply the results of theorem 2 to a particularly important

special case, i.e., when the upper left matrix of the infinite system is

similar to a diagonal matri.c. These results are given in:

Theorem 3. Consider the infinite system

CO

(2.7	 X 	 Kid xj
	 Kid is in general complex.

,j =1

4

Let T be an m x m matrix for which



m
VI	

2L l Tjk l s to)
k=1

to n. > 1,

r2 = 2mwpm
m	

, r2 = 2m pm

s2 
= 2m 2

m	 ^n'
22s0=2mgM.

If	 i,	 is an eigenvalue of (2.7), and (C1,C2,...)	 a corresponding ei en-

vector in 12) then	 X lies in
m

(2 . 9)	 U (z: Iz - fkl < rm} U (z: Izl < r01
k=1

and in
m

(2.10)	 U (z: lz -fk l < sm } U (z: lzl < s0}.
j=1

14

fl	 0

T-lI"T=F=
	 f„	

(T is in general complex)

U
	

fIm
where

Km 
= (K. )mxm

	
1 si,j sm

A

and
m

(2.8)	 ltjkl2 s to

j =1

where T =: (t jk ),	 T -1 = ( Tjk ) . Let

w m

2Pm = t2
K	

2
0

ai=m+1 i=1

CO m

^n =t0 L 1x)12'
k--m+1 k=1

Moreover, each component of (2.9) ( respectively (2.10)) contains exact ly as

many eigenva.lues as circles where the eigenvalues and circles are counted

with the--r multiplicities.

Proof: Let

B= (K j)
i 

5	 s1 	i m,	 m+ l s j



CO	 CO
.2

2
I Ki j I < 2

i=m+1 j=1

CO	 00
E2

L. I2< aIK	 .
lj	 2

j =q+l i=1

15

C = (Kii)
	 m+1 si,,	 1 s j s m

D = ( K1j )	M + 1 s i,	m + 1 s j

S

_ I T-1	 l	 FT 0, rF i i B^

0	 I i 1 ^1 1 0 I 	 D `	 LC T

Note that K has the same eigenvalues as K. If we let

co

	

(2.11)	 pk	 =	 2m ^ IKkj12	 = 2m	 IKkjI2,

j #k	 j--m+1

and

	

(2.12)	 -	 =	 2m ` 
IKkj12 

= 2m 1 IKkj12,
k#j	 k=m+l

1 sk sm,

1 s j . M.

When we can conclude from theorem 2 that the eigenvalues of K lie in

(2.13)

and in

(2.14)

where

(2.15)

m
U (z: Iz -fk l < pk } U (z: IzI < El}
k=1

M.
U (z: Iz - f  I < Yj I U (z: IzI < E2}

j=1

3ut for 1 5 k s m, m+l s j m

(2.16)	 1 kkj 1 2 = ( (T -1
B) kj I 2 = I
	

T k A Kzj 12,

I--1

M	 m

s	 I Tkl 12	 I K,j 12
L--1	 e=i

m

s to	 IK; 
1
2 .

,^=1

I
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Thus combining (2.11) and (2.16) gives

	

00	 m

	

(2.17)	 Pk 5 2m t2	 L I K ,
j 

1 2 = r 22	 1 s k s m,

j =m+1 Z--1

and similarly

	

00	 m

^' S K

	

(2.18)	 2
Y	 5 2m t0 L	 L I __k.^I 2 = s2 ,	 1 s j s M.

J	 m
k=m+1 L=1

Finally we note that

00	 00	 CO	 00

(2.19)	
Ihij 

12
 IKij 12 +

i --7r^+1 j =1	 i =m+1 j---m+1

CO	 00

Ki j 1 2 +
i=m+l j=m+1

«	 CO

s	 IK..I2 +

i=m+l j--rn+l

00 m

I Ki j 12

W m

L I (CT)ij I2

i=m+1 j=1

CO m m

L r[ 11
I	 Ki 2t Ij 12 J

i =m+l j =1 .e=1

0

s

i=m+l
IKij I?

j =m+l

c

+
i=m+1

r 

m	 m	 m	
1

L	 L IKi.^ I2^ 	 It'j 
12 

J
j =1	 I,,—	 1=1

CO

s
00

I K.. 1 2
^ J

+ mt 2
o

m

I K.	 12
:	 e	 J

i _-m+l j--M+1 L--1

CO	 OD

< mt0	^ IKi I2 since mt0 > 1J
i=m+l j =1

s2/2 .

Thus -'_. the e l of (2.15) we can take s 0 . Combining (2.13),(2.14),(2.1;),

(2.18) and (2.19) we obtain the conclusion (2.9) and similarly (2.10).
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Corollary. In the event that	 is smiwhoto we can take t 0 = 1.

Proof. This follows, since for T we can take an orthogonal matrix,

thus each row and column has Euclidean length one and T 1 = T-1.

§3. Application to ordinary differential equations. Consider the

ordinary differential equation of degree n z 2

(3 .1 )
	

L[u] + Xu = r(x)

on the interval [0,Z] with the system of boundary conditions

( 3 .2 )	 Mi[U] = A i [u] + BJu l, 	i n 1,2, ... ,n,

where

L[u] = Pn(x)u(n)(x)+'Pn-1(x)u(n-1)(x) + ... + P O ( x ) u ( x ) = 0 )	 Pn ^ 0)

and Ai [u] are boundary conditions relative to the end point 0 and

Bi l.u] are relative to the end point 1. Let G(x,^) be the Green's

ftuiction for this system. Then, as is well known, see e.g. [ 4 ], if the

system is self adjoint then G is symmetric, G(x,^) E Cn-2[0,,t],

Dn-1 G (
F+O 1	 Dn-1 G (^-0, ^ ) = 1 / Pn (^ )

and (3.1) and (3.2) are equivalent to the integral equation

i
U(X) + a f' G(x,^)u(^)d^ = f(x)

0
where

f(x) = f G(x,^)r(^)d^.
0

In the event we take the ortronormal set to be

27
i	 µs

2e	 µ = 0,1,2, ...	 ,
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we can state the following

Le=a 3.1. If G(x,F) is the Green's function of P n (x)y (n) (x) +
—	 —	 — 

Pn-l(x)y (n-1) (x) + •••+ P0 ( x ) y ( x ) = 0 on [0,Z] with boundary conditions

of the form (3.2), and K(x,^) = p(x)p(^)G(x,^) is the kernel of the

equivalent integral equation p E C n [0,.Z] p > 0 on [0,1] and

+ 2 m ( 
µ 
J _	 )

gµJ (K) _	 f
0 

ds f
0 

dt K(s,t)e

then

I g I s A v
-n ,	

µ 2 0,	 v ".0,µv

where

n

(3.3)	 A = 1-1 (2n % C

(3•)	 C =	 [IDt-1K(s^0)I + IDt-1K(s,.Z)I + 2A",sup B(s,t)]ds
0	 t

n>	 1	 1(3.5)	 B(s,t) = I P( s ) I Z L I \ k / Dt P( t ) - P(t)p- (t)Pn-kkt) I + 11\k-1/ D
t-l p(t) I JID -kG(s,t) ! .

k=1

Proof. Let p e (r.,5) be the C "O (R2 ) - function that is 1 for

< x < i-E, e < F < k-e and has support in the square [0,L] x [0,.8].

If we let

Ke(x,Fl) = Pe(x,^)K(x,^)

then Ke has n-1 bounded d-rivatives and

Ig v	
µ 
v(K) - g (K E ) I s

µ	
S
0

 1  IK(s,t) - K e (s,t) Ids dt.
0
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This together with Egorov's theorem shows that g
µv 

(Kt) converges to

9µv(K) as E tends to 0.

6

Since K ` (s,t) is periodic of period Z, we obtain by integration

by parts that

"
g (KE) _ (
	 1-` v)g (Drr-1KE)

	

µv'	 \ 2T'i /	 µv t

provided Dt -1 K ^ 0. Note that Dt -1 K t / 0 for small enough e when

Dn-1 K -̂ 0, and in case Dt-1 K = 0 we have K is a polynomial in t of

degree s n-2. However, since K is of the form K(x,^) = p(x)p(5)G(x, )

where G is a Green's function and p E Cn [0,.21, K has a discontinuity

in its (n-1)' t derivative. By the same argument ac above g (D n-1 KE)
µv t

es toconger	
n-1	 n-1,

g	 gµv(Dt K) as E tends to 0. Thus for D 	 K ^ 0 we

have

, )n-1 _(n-1)
	 n-1(^•6)	 gµv(K) _ \ 27i	 v	 gµv(DL K) .

Let

1	 O tss - m, s+mst sI

^s
-

-
-
1 2m - t 2

2(s-1 m-t	 1	 _ I1- e	 ,	 s-	 s< t	 sm 	
2m

0
2m :5.
	
ss+2m

(s+1 2m -t 2
2(t - 1	 1	 11	 e	 ,	 +2mst <s + m ,
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Tr en y m(s,t) is infinitely riiffcrentiab!e with I*ml	 1.

Now consider

+ 2rri

(µJ -	 )I g (^ F) _ (' ds r dt Y (s,t) F(s,t)e

	

µv m	 JO ^0	 m

where

(3.7)	 F(s,t) = D
n-1 

K(S,t).

Chen
-	 ^. rs - 2 

+ 
^,Z	

] [*M ( Slt)	
+ 2n i (µs - vt )

	

I gµv(^mF)	 J ds `^	 1 	 F(s,t)e	 dt].
	C 	 G	 s +-2m

Note that

1s	 2m_	
vt s -2ni	 1

- -•	 -	 -	 —

J	 dt *m(s't)F(s't	
vt

)e	 --	 2n v ^m(S't) F(s,t)e	 i - 2m
p	 t-0

1	 2ri
_.2 ^'' - 2m.	 v

+ 2niv	 Dt(*m(s,t) F(s,t))e
0

s
2rTv 1 IF(s,0) I+ I sup B(s,t)^

L- t

since Y(s,s-G ) = 0 and

i Dt [*m (s,t)F(s,t)]I = IF(s,t)DJ.,(s,t) + y/..^(s,t)DtF(s,t) ( for t on [0 ; s- 7m 1

s IF(s, t )I + IDtF(S,t)I

where use has been made of the fact that Dtyrm(s,t) < 	 s1 for 0 t s	 1s - 1 ,

moreover

IDt[*m(s^t)F(S)t)lI s Bp( S, t)

where
n

Bp(s^ t )	 IF(s^t) I + I P( s ) I ^ [( k ) DtP(t) - P(t)pnlkt)pn-k(t) JDt -k G(s,t)

k=1

3



Here use has been made of Leibnitz rule and the fact that G satisfies the

differential equation. Use of Leibnitz rule for F and the triangle

inegaality gives B(s ) t). Similarly

- 27.j vt

	

dt * (s,t) F(s,t)e	 1	 ( S 2 ry	 '^) ( + L sup B(s,t)]
s+ 1	 t

2r.

Thus

gµv(WmF' I s 2nv J	 JF(s,0) I + IF(s ) ,e) I + 21 sup B(s,t) ] ds .

	

0	 t
But

	

I	 I
gµv (YmF) - gµv (F) j s f0ds : 1* , (s,t) - li IF(s,t) Idt

I	 I
s sup IF(s,t)II ds f 1v, (s,t)-lldt

s,t	 0	 0

and thus since Ym converges to 1 in Ll , means we get that

elg (F) Iµv	 s 2n v C

and thus from (3.6) and ( 3-7)

gµv(K) I s \ 2 n /n C nv

which is the result.

We are now in a position to state the general

Theorem 4. Let

1 I	 L	 +i21 (µs- vt )
g	 =	 dsdt K(s,t)e
µv ^ 0 ^0

0



6
1

2.2

and consider the matrix (9111V) ; µ,v	 0, -1, 1, -2, 2,	 where

_ - m21 if m is odd ano - 2 if m is evcn. If f1,fZ,...,fm are

the eigenvalues of ( gµv) then the eigenvalues of (3.1) lie in

M
(3.8)	 U (z: 1z -fk I < rm ) U (z: Izi < ro)

k=1

where

(3.9)	 rm = 2m pm,	 ro = 2m pm

Faith

m/2 - 1

(3.10) p2 = m A2
	 ( 2--T)2n 

B	 -2n- 	
17 I v I -2n -

M	 [	 n ^ 2 ^	 L[2n ^'
	 v`1

for m even and

(m-1)`2

( 3 .11)	 p2 = m A2 r ( 2T7)2n B - 2	 >̂  I v i -2n
n,	 L [2n ] ^	 n	 L

^l

for m odd. Bn is the nth BernoL.ili number ( Bl = ^, B2 = 1

B3 = 
2,	

B = 30), and A is given ^ (3.3) of lee r- 3.1. Moreover,

each component o f (3.8) contains xactly as many eigenvalues as circles,

where the eigenvalues al-id c ircles are counted with their =ltiplieities.

Remark: It is a remarkable fact that the radii of the circles appearing

in (3.6) depend only on the order of the differential equation and A.

Proof. Since ( gµv ) is symmetric, there exists an rrthogonal matrix

T such that

\t'µv

where F is a diagonal matrix with eigenvalues of (g
µv

 ) down the diagonal

and T' is the transpose of T. Thus we can take t
0 
=1 in theorem 3.



Let

(k) = [ 2 J(-1)k+1, [1] denotes th., greatest integer s 1.

1
•

7^

:'rom theorem 3 we obtain

Go

pn - ^v

^m+1

CO

L
%;=m+l

m
2

^. Ig(µ), (^)I
µ=1

m	 2

(L 19 (1-) ^ l r) I	
Y

µ=2

m
2

^ aJ (v) I
NV=m+l

But by lemma (3.1)

Ig(r-J^ 
(v) I2 s A2 ( v )-2n

....ere A is given by lemma 3.1. We must now consider the cases where m

is even and where m is odd.

	

,Case 1. (m even)	 Here we have (m+l1 = 2 and thus

	

Go	 m

	

p2m S A2 ^	 ^ I(v)I-2n

v=m+l µ=1

CO

s m A2 [ 2	 I v I 
-2n 

+ I m 1
-2n]

v=m/2 + 1

	

CO	 m/2 - 1

s m 
A2 r 2 ^' 

I v I 
-2n - 1

I
 -2n - 2	 ^ I v i 

-2n
	L L	 '2	 J

^1	 ^1

2n 2nm^2 - 1

s mA2r2 
r 

B - 
12 ^- n - 2
	

2n

2n]

	
I^[2n ]	

^1	
J
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6

where 3	 de:zoLes the nth Bernoulli number.
n

Case 2. (m odd) Similarly we obtain

2n
m-1^2

pm s m. A2 L 2-*	 Bn - 2 \ I v -2n J .

[2n ] ! l
^4. Numericalm	 cal examples. Since the radii r 	 of the circle 's in

The,..;-.--em 4 depend only on the order of the differential equation and the

constant A we give below a table for r m/A for n =2 and n =4.

(4.1) M rm/A,	 n=2 rm/A,	 n=4

4	 ' 1.80793 .366

6 1.4o176 .117

8 1.18939 .0532

10 1.053 .02937

20 f	 .734 .00489

30 (	 .598 .00175

40 .517 .000850

50 I	 .462 I	 .000486

Next we apply the theory to several examples. As a first illustration

we consider a whirling shaft of length 27 see e. r^., [7, p.4431 that rotates

between bearings at 0 and 2-,T. The differential equation governing the

transverse ,isplacement a is of the form

u (4) N = X u

with zhe boundary conditions u(0) = u(2-t) = u"(0) = u"(27) = 0.

The Jr;en's function and also the kernel of the integral equation f•r
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6

this problem is given by

c

^12r*TT [S(F - 4rr )x + x3 1	 x < 5

x-2 [x(x
-4rr)F +^3] 	 x a S

and a bound for A is 2 + 4n. Combining this wi-ch table (4.1) we get

(4.2) A =2 +47

r4 = 5.33129

r6 = 1.70426

r8 =	 .77493

r10 = .427814

r20 = .065388

r30 = .0254911

il40 =
.0123814

r50 = .0070792

The computed eigenvalues, using the Green's function, are compared with

the exact eigenvalues in table (4.6). The routine for finding the eigen-

values of the matrix was only accura 	 to three places.

As a second illustration we consider an inhomogeneous string, fixed

at one end and r•^stricted to move transversally unaer an elastic force at

the other end. The differential equation g(verning the transverse displace-

ment y is of the form

-y^^ = ?,(2-x2 )Y,	 Y( 0 ) = 0,	 2y(1) +y'(1) = 0

see [?, p.252]. By differentiation and because of un.;.queness his problem

is equivalent to solving:
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b

[(2-x2)-ly„^^, _ x2(2-x2)y

y ( 0 ) = y" (0) =0 1 	2y(1) +y'(1) = 0 ^	
4y .. (1) +y...(1) 

=0.

The Green's function for this problem is given by

(4.3)	 G(x,E)	 = [ FI(x) +x,e(	 )^ + -3	 - 1)(3 x - 1^ - k(x) 	 xm(^)15

= 3 L x ^(S) + ^2(x) J + 7 C 3 x - 1^(35m ( x ) ,
where

.Z(x) = 60 1-3x 5 + 20x3 — 45x + 281

m' x) = 12 r -x4 + 12x2 - 20x + 91.

the kernel K(x „) of the integral equation is given by

x < ^

x z

(4.4)
	 K(x,5) = J2 - x2 	2 - ^2	 G(x,$)

and the entries in the equivalent matrix are given by

1	 1	 + 2 mi (µs-^ )g	 = ^' ds r dt e	 K(s,t) .
µv	 o	 ' o

A bound for A is 5. Combining this with table (4.1) we get

(4.5) A =5

r4 = 1.83

r6 =	 •585

r8 =	 .266

r10 =	 .14685

r20 =	 .022445

r30 =	 .00875

r40
=	 .00425

r50 =	 .00243

i

a

The computed eigenvalues, using the Green's function, are compared with

the estimate. obtained by Colla.tz [3, p.2571 in table (4.7). In this

case, the routine for finding the eigenvalues of the matrix is accurate

to three decimals.
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(4.6)

Twirling Shaft

Eigenvalues computed	 Exact	 Actual Error Theoretical error
via Green's function leigentialues	 estimate for A= 2+4n

X1 15.99950 16.00000 .000050 .0124

^2
.9999753 1.00000 .000025 .0124

a3 •1975536 •197531 •00000

X4 .0624986 .062500 .000002

.0255906 .025600 .000009

X6
.0123447 .0123457 .000001

.0066600 .0066639 .000003A. 7

X
8

.0039062 .0039062 .0

a9 .0:24354 .002414 .000021

X10  .00.^5999

i
.00l600 .000001

,

6
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